Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.374
Filtrar
1.
Front Public Health ; 12: 1302175, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38481847

RESUMO

Introduction: This study aimed to investigate the potential of short-term aerobic exercise to mitigate skeletal muscle mitochondrial damage following ambient PM2.5 exposure, and how 12 weeks of endurance training can enhance aerobic fitness to protect against such damage. Methods: Twenty-four male C57BL/6 J mice were split into sedentary (SED, n = 12) and endurance training (ETR, n = 12) groups. The ETR group underwent 12 weeks of training (10-15 m/min, 60 min/day, 4 times/week), confirmed by an Endurance Exercise Capacity (EEC) test. Post-initial training, the SED group was further divided into SSED (SED and sedentary, n = 6) and SPE (SED and PM2.5 + Exercise, n = 6). Similarly, the ETR group was divided into EEX (ETR and Exercise, n = 6) and EPE (ETR and PM2.5 + Exercise, n = 6). These groups underwent 1 week of atmospherically relevant artificial PM2.5 exposure and treadmill running (3 times/week). Following treatments, an EEC test was conducted, and mice were sacrificed for blood and skeletal muscle extraction. Blood samples were analyzed for oxidative stress indicators, while skeletal muscles were assessed for mitochondrial oxidative metabolism, antioxidant capacity, and mitochondrial damage using western blot and transmission electron microscopy (TEM). Results: After 12 weeks of endurance training, the EEC significantly increased (p < 0.000) in the ETR group compared to the SED group. Following a one-week comparison among the four groups with atmospherically relevant artificial PM2.5 exposure and exercise treatment post-endurance training, the EEX group showed improvements in EEC, oxidative metabolism, mitochondrial dynamics, and antioxidant functions. Conversely, these factors decreased in the EPE group compared to the EEX. Additionally, within the SPE group, exercise effects were evident in HK2, LDH, SOD2, and GPX4, while no impact of short-term exercise was observed in all other factors. TEM images revealed no evidence of mitochondrial damage in both the SED and EEX groups, while the majority of mitochondria were damaged in the SPE group. The EPE group also exhibited damaged mitochondria, although significantly less than the SPE group. Conclusion: Atmospherically relevant artificial PM2.5 exposure can elevate oxidative stress, potentially disrupting the benefits of short-term endurance exercise and leading to mitochondrial damage. Nonetheless, increased aerobic fitness through endurance training can mitigate PM2.5-induced mitochondrial damage.


Assuntos
Treino Aeróbico , Condicionamento Físico Animal , Humanos , Masculino , Camundongos , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Condicionamento Físico Animal/métodos , Condicionamento Físico Animal/fisiologia , Resistência Física/fisiologia , Camundongos Endogâmicos C57BL , Mitocôndrias , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Material Particulado/efeitos adversos
2.
J Cell Physiol ; 239(4): e31199, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38291668

RESUMO

The effects of exercise training (ET) on the heart of aortic stenosis (AS) rats are controversial and the mechanisms involved in alterations induced by ET have been poorly clarified. In this study, we analyzed the myocardial proteome to identify proteins modulated by moderate-intensity aerobic ET in rats with chronic supravalvular AS. Wistar rats were divided into four groups: sedentary control (C-Sed), exercised control (C-Ex), sedentary aortic stenosis (AS-Sed), and exercised AS (AS-Ex). ET consisted of five treadmill running sessions per week for 16 weeks. Statistical analysis was performed by ANOVA or Kruskal-Wallis and Goodman tests. Results were discussed at a significance level of 5%. At the end of the experiment, AS-Ex rats had higher functional capacity, lower blood lactate concentration, and better cardiac structural and left ventricular (LV) functional parameters than the AS-Sed. Myocardial proteome analysis showed that AS-Sed had higher relative protein abundance related to the glycolytic pathway, oxidative stress, and inflammation, and lower relative protein abundance related to beta-oxidation than C-Sed. AS-Ex had higher abundance of one protein related to mitochondrial biogenesis and lower relative protein abundance associated with oxidative stress and inflammation than AS-Sed. Proteomic data were validated for proteins related to lipid and glycolytic metabolism. Chronic pressure overload changes the abundance of myocardial proteins that are mainly involved in lipid and glycolytic energy metabolism in rats. Moderate-intensity aerobic training attenuates changes in proteins related to oxidative stress and inflammation and increases the COX4I1 protein, related to mitochondrial biogenesis. Protein changes are combined with improved functional capacity, cardiac remodeling, and LV function in AS rats.


Assuntos
Estenose da Valva Aórtica , Condicionamento Físico Animal , Ratos , Animais , Ratos Wistar , Proteoma , Proteômica , Condicionamento Físico Animal/métodos , Inflamação , Lipídeos
3.
J Vis Exp ; (194)2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-37184272

RESUMO

Compared to continuous-moderate or low-intensity training, high-intensity interval training (HIIT) is a more time-efficient alternative method that results in similar physiologic benefits. This paper presents a HIIT protocol that can be used to assess various health markers in a Sprague-Dawley rat model of diet-induced obesity. Female Sprague Dawley rats aged 21 days old were randomly assigned to the following groups: control (CON, n = 10), exercise-trained (TRN, n = 10), high-fat diet (HFD, n = 10), and high-fat diet/exercise training (HFD/TRN, n = 10). The control diets consisted of commercial laboratory chow with 10% kilocalories (kcal) from fat (3.82 kcal/g), and the high-fat diets (HFD) consisted of 45% kcal from fat (4.7 kcal/g). The animals had ad libitum access to their assigned diet throughout the study. After an 8 week diet induction period, the exercise cohorts completed four HIIT sessions per week for 8 weeks. Each HIIT session consisted of 10 intervals of 1 min sprints/2 min rest using a rodent treadmill with a motor-driven belt. After the 8 weeks of training, the animals were sacrificed for tissue collection. The results revealed no differences in the distance run between the TRN and HFD/TRN groups, and the training speed steadily increased over the duration of the study, with a final running speed of 115 cm/s and 111 cm/s for the TRN and HFD/TRN groups, respectively. The weekly caloric intake was decreased (p < 0.05) in the TRN group relative to the CON group but increased (p < 0.05) in the HFD/TRN group relative to the HFD group. Lastly, the animals on the HFD had greater (p < 0.05) adiposity, and the trained animals had reduced (p < 0.05) adiposity relative to controls. This protocol demonstrates an efficient method to evaluate the effects of HIIT on various physiologic outcomes in a diet-induced obesity model.


Assuntos
Treinamento Intervalado de Alta Intensidade , Condicionamento Físico Animal , Ratos , Feminino , Animais , Ratos Sprague-Dawley , Treinamento Intervalado de Alta Intensidade/métodos , Condicionamento Físico Animal/métodos , Obesidade/etiologia , Dieta Hiperlipídica/efeitos adversos
4.
Behav Brain Res ; 443: 114331, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-36774999

RESUMO

Good aerobic fitness associates positively with cognitive performance and brain health and conversely, low aerobic fitness predisposes to neurodegenerative diseases. To study how genotype together with exercise, started at older age, affects brain and behavior, we utilized rats that differ in inherited aerobic fitness. Rats bred for Low Capacity for Running (LCR) are shown to display less synaptic plasticity and more inflammation in the hippocampus and perform worse than rats bred for a High Capacity for Running (HCR) in tasks requiring flexible cognition. Here we used middle-aged (∼ 16 months) HCR and LCR rats to study how genotype and sex associate with anxiety and neural information filtering, termed sensory gating. Further, we assessed how inherited aerobic capacity associates with hippocampus-dependent learning, measured with contextual fear conditioning task. In females, we also investigated the effects of voluntary wheel running (5 weeks) on these characteristics. Our results indicate that independent of sex or voluntary running, HCR rats were more anxious in open-field tasks, exhibited lower sensory gating and learned more efficiently in contextual fear conditioning task than LCR rats. Voluntary running did not markedly affect innate behavior but slightly decreased the differences between female LCR and HCR rats in fear learning. In conclusion, inherited fitness seems to determine cognitive and behavioral traits independent of sex. Although the traits proved to be rather resistant to change at adult age, learning was slightly improved following exercise in LCR females, prone to obesity and poor fitness.


Assuntos
Atividade Motora , Condicionamento Físico Animal , Ratos , Feminino , Animais , Condicionamento Físico Animal/métodos , Tolerância ao Exercício , Genótipo , Obesidade
5.
Physiol Rep ; 10(24): e15542, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36543327

RESUMO

We investigated the effects of aging and long-term physical activity on markers of mitochondrial function and dynamics in the cortex and cerebellum of female rats. Additionally, we interrogated markers of oxidative damage and antioxidants. Thirty-four female Lewis rats were separated into three groups. A young group (YNG, n = 10) was euthanized at 6 months of age. Two other groups were aged to 15 months and included a physical activity group (MA-PA, n = 12) and a sedentary group (MA-SED, n = 12). There were no age effects for any of the variables investigated, except for SOD2 protein levels in the cortex (+6.5%, p = 0.012). Long-term physical activity increased mitochondrial complex IV activity in the cortex compared to YNG (+85%, p = 0.016) and MA-SED (+82%, p = 0.023) and decreased carbonyl levels in the cortex compared to YNG (-12.49%, p = 0.034). Our results suggest that the mitochondrial network and redox state of the brain of females may be more resilient to the aging process than initially thought. Further, voluntary wheel running had minimal beneficial effects on brain markers of oxidative damage and mitochondrial physiology.


Assuntos
Atividade Motora , Condicionamento Físico Animal , Ratos , Animais , Feminino , Atividade Motora/fisiologia , Condicionamento Físico Animal/métodos , Ratos Endogâmicos Lew , Envelhecimento/fisiologia , Mitocôndrias/metabolismo , Cerebelo , Oxirredução
6.
Zhongguo Ying Yong Sheng Li Xue Za Zhi ; 38(3): 207-211, 2022 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-36062786

RESUMO

Objective: To investigate the effects of continuing exercise and load-bearing interval exercise on skeletal muscle tissue cell morphology, Ras-related proteins 5 (Rab5) mRNA and protein expression and glucose metabolism in skeletal muscle of type 2 diabetic mellitus (T2DM) rats. Methods: Eight SD rats were selected as controls group (CR), the others SD rats were fed with high fat and high sugar diet for 6 weeks before injecting STZ (35 mg/kg) to construct the T2DM model. Twenty-four T2DM rats were randomly devided into T2DM model group (DRM), continuing exercise group (DCRE) and load-bearing interval exercise group (DWRE), 8 rats in each group. DCRE exercise protocol, that was 15 m/min (10 min), 20 m/min (40 min), 15 m/min (10 min), during the first 1~2 weeks, and 18 m/min (10 min), 25 m/min (40 min), 15 m/min (10 min), during the second 3~8 weeks. DWRE exercise protocol: load weight 15% / 1~2 weeks, 30% / 3~4 weeks, 45% / 5~8 weeks, with 15 m/min (5 min), 12 groups and 3 min rest between groups. After 8 weeks, pathological and morphological changes of skeletal muscle were observed by HE. Rab5 and Glucose transporte 4 (GLUT4) mRNA expressions of skeletal muscle were tested by qRT-PCR. Rab5 protein expression in skeletal muscle was tested by immunofluorescence histochemistry and Western blot, and plasma Rab5 and Glycosylated Hemoglobin (GHb) concentrations were detected by ELISA. Results: Comparison with CR, DRM showed pathological damage of skeletal muscle, the expressions of Rab5 mRNA, protein and GLUT4 mRNA were all decreased in skeletal muscle (P<0.01), the serum levels of Rab5 and GHb were both significantly elevated (P<0.01). Comparison with DRM, both DCRE and DWRE significantly improved pathological damages of skeletal muscle, the expressions of Rab5 mRNA, protein and GLUT4 mRNA were all increased in skeletal muscle (P< 0.05, P<0.01), the serum levels of Rab5 and GHb were decreased (P<0.05, P<0.01), and there was no statistical difference between DCRE and DWRE groups (P>0.05). Conclusion: Two exercise modes can improve the pathological injury of skeletal muscle in type 2 diabetic rats, and enhance GLUT4 transport capacity by improving the expression of Rab5 gene and protein in skeletal muscle, and alleviate the imbalance of glucose metabolism homeostasis in skeletal muscle. However, there was no significant difference between the effects of two exercise modes on Rab5 protein and glucose metabolism in skeletal muscle.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Músculo Esquelético , Condicionamento Físico Animal , Proteínas rab5 de Ligação ao GTP , Animais , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Glucose/metabolismo , Hemoglobinas Glicadas , Insulina , Músculo Esquelético/metabolismo , Condicionamento Físico Animal/métodos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Proteínas rab5 de Ligação ao GTP/metabolismo
7.
J Equine Vet Sci ; 115: 104025, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35649493

RESUMO

Water treadmill (WT) exercise is frequently used for training/rehabilitation of horses. There is limited study into the effect of water depth on limb/back kinematics warranting investigation. The objective was to determine the effect of walking in different water depths, at the same speed, on limb/back kinematics measured simultaneously in a group of horses. Six horses (age:15 ± 6.5 years) completed a standardized WT exercise session (19 minutes duration; speed:1.6 m/s; water depths: 0.0/7.5/21.0/32.0/47.0 cm). Ten waterproof light-emitting-diode tea-light-markers and reflective-spheres were affixed to the skin at predetermined locations; inertial-measurement-units were fixed to the poll/withers/left and right tubera coxae (TC)/sacrum to determine range-of-motion (ROM) changes of these locations. Univariable-mixed-effects-linear-regression-analyses were carried out, with a significance value of P ≤ .05. At maximum carpal/tarsal flexion during swing, regression analyses showed a clear and consistent nonlinear increase in carpal and tarsal flexion at increasing water depths (P < 0.0001 for both variables). As water depth increased there was a significant increase in thoracic spine flexion-extension ROM (P < 0.0001 at all thoracic sites) and increased dorsoventral and mediolateral ROM of the sacrum/left and right TC (P < 0.001 for all variables) as water depth increased. Results suggest that horses responded to an increase in water depth until a threshold depth was reached when the biomechanical response levelled off, and there was increased pelvic roll. In conclusion, changes in limb kinematics brought about by relatively modest increases in water depth at walking speed of 1.6 m/s are sufficient to induce significant changes in back/pelvic movement highlighting key issues with relevance for WT program design.


Assuntos
Condicionamento Físico Animal , Água , Animais , Fenômenos Biomecânicos , Cavalos , Condicionamento Físico Animal/métodos , Sacro , Caminhada/fisiologia
8.
J Vis Exp ; (182)2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35575533

RESUMO

Previously developed rodent resistance-based exercise models, including synergistic ablation, electrical stimulation, weighted-ladder climbing, and most recently, weighted-sled pulling, are highly effective at providing a hypertrophic stimulus to induce skeletal muscle adaptations. While these models have proven invaluable for skeletal muscle research, they are either invasive or involuntary and labor-intensive. Fortunately, many rodent strains voluntarily run long distances when given access to a running wheel. Loaded wheel running (LWR) models in rodents are capable of inducing adaptations commonly observed with resistance training in humans, such as increased muscle mass and fiber hypertrophy, as well as stimulation of muscle protein synthesis. However, the addition of moderate wheel load either fails to deter mice from running great distances, which is more reflective of an endurance/resistance training model, or the mice discontinue running nearly entirely due to the method of load application. Therefore, a novel high-load wheel running model (HLWR) has been developed for mice where external resistance is applied and progressively increased, enabling mice to continue running with much higher loads than previously utilized. Preliminary results from this novel HLWR model suggest it provides sufficient stimulus to induce hypertrophic adaptations over the 9 week training protocol. Herein, the specific procedures to execute this simple yet inexpensive progressive resistance-based exercise training model in mice are described.


Assuntos
Condicionamento Físico Animal , Treinamento de Força , Animais , Camundongos , Atividade Motora/fisiologia , Proteínas Musculares/metabolismo , Músculo Esquelético/fisiologia , Condicionamento Físico Animal/métodos , Treinamento de Força/métodos
9.
Int J Mol Sci ; 23(10)2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35628344

RESUMO

Hypertension is associated with blood-brain barrier alteration and brain function decline. Previously, we established the 2-kidney,1-clip (2K1C) hypertensive mice model by renin-angiotensin system (RAS) stimulating. We found that 2K1C-induced hypertension would impair hippocampus-related memory function and decrease adult hippocampal neurogenesis. Even though large studies have investigated the mechanism of hypertension affecting brain function, there remains a lack of efficient ways to halt this vicious effect. The previous study indicated that running exercise ameliorates neurogenesis and spatial memory function in aging mice. Moreover, studies showed that exercise could normalize RAS activity, which might be associated with neurogenesis impairment. Thus, we hypothesize that running exercise could ameliorate neurogenesis and spatial memory function impairment in the 2K1C-hypertension mice. In this study, we performed 2K1C surgery on eight-weeks-old C57BL/6 mice and put them on treadmill exercise one month after the surgery. The results indicate that running exercise improves the spatial memory and neurogenesis impairment of the 2K1C-mice. Moreover, running exercise normalized the activated RAS and blood-brain barrier leakage of the hippocampus, although the blood pressure was not decreased. In conclusion, running exercise could halt hypertension-induced brain impairment through RAS normalization.


Assuntos
Hipertensão , Condicionamento Físico Animal , Animais , Barreira Hematoencefálica , Hipocampo , Camundongos , Camundongos Endogâmicos C57BL , Neurogênese , Permeabilidade , Condicionamento Físico Animal/métodos , Sistema Renina-Angiotensina , Memória Espacial
10.
Physiol Rep ; 10(3): e15174, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35133078

RESUMO

Previous studies suggest that sex differences in lipid metabolism exist with females demonstrating a higher utilization of lipids during exercise, which is mediated partly by increased utilization of muscle triglycerides. However, whether these changes in lipid metabolism contribute directly to endurance exercise performance is unclear. Therefore, the objective of this study was to investigate the contribution of exercise substrate metabolism to sex differences in endurance exercise capacity (EEC) in mice. Male and female C57BL/6-NCrl mice were subjected to an EEC test until exhaustion on a motorized treadmill. The treadmill was set at a 10% incline, and the speed gradually increased from 10.2 m/min to 22.2 m/min at fixed intervals for up to 2.5 h. Tissues and blood were harvested in mice immediately following the EEC. A cohort of sedentary, non-exercised male and female mice were used as controls. Females outperformed males by ~25% on the EEC. Serum levels of both fatty acids and ketone bodies were ~50% higher in females at the end of the EEC. In sedentary female mice, skeletal muscle triglyceride content was significantly greater compared to sedentary males. Gene expression analysis demonstrated that genes involved in skeletal muscle fatty acid oxidation were significantly higher in females with no changes in genes associated with glucose uptake or ketone body oxidation. The findings suggest that female mice have a higher endurance exercise capacity and a greater ability to mobilize and utilize fatty acids for energy.


Assuntos
Metabolismo dos Lipídeos , Músculo Esquelético/metabolismo , Condicionamento Físico Animal/métodos , Corrida , Animais , Feminino , Corpos Cetônicos/sangue , Corpos Cetônicos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/fisiologia , Caracteres Sexuais , Triglicerídeos/sangue , Triglicerídeos/metabolismo
11.
Life Sci ; 295: 120377, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35131235

RESUMO

AIMS: We evaluated the role of intergenerational paternal exercise on fibrosis, inflammatory profile, and redox status in the adipose tissue of male rat offspring fed with high-fat diet (HFD) and explored to what extent programming affects the systemic metabolic profile. MAIN METHODS: Adult wistar rats were randomly divided into two groups: sedentary fathers and trained fathers (8 weeks of resistance training (RT), three times per week). The offspring were obtained by mating with sedentary females. Upon weaning, male offspring were divided into four groups (7 animals per group): offspring of sedentary fathers exposed to either a control diet (SFO-C) or a high-fat diet (SFO-HF); offspring of trained fathers exposed to a control diet (TFO-C) or a high-fat diet (TFO-HF). KEY FINDINGS: Paternal RT was effective in attenuating body weight gain, adipocyte size, collagen deposition, as well as downregulating genes (CTGF, VEGF, C/EBPα SREBP1, MCP-1, and NF-kB), pro-inflammatory cytokine levels (Tumor Necrosis Factor alpha and Interleukin-1-beta), matrix metalloproteinase -2 activity, and ROS production in the epididymal adipose tissue of offspring fed with HFD (TFO-HF vs. SFO-HF; P < 0.05). Moreover, paternal RT increased adiponectin and superoxide dismutase (SOD) activity in the tissue. These beneficial effects were accompanied by the increase of antioxidant enzymes (SOD and α-Klotho), while decreasing pro-oxidant agents (F2-isoprostanes, protein carbonyls levels), and metabolic markers (insulin and leptin, HOMA-ß, and HOMA-IR) in the offspring blood circulation. SIGNIFICANCE: Our findings reveal protective effects of intergenerational paternal RT on adipose tissue remodeling and metabolic health of offspring fed with HFD.


Assuntos
Tecido Adiposo/fisiologia , Fibrose/fisiopatologia , Herança Paterna/fisiologia , Animais , Peso Corporal , Citocinas/metabolismo , Dieta Hiperlipídica , Pai , Fibrose/prevenção & controle , Insulina/metabolismo , Interleucina-1beta/metabolismo , Masculino , Obesidade/metabolismo , Oxirredução , Exposição Paterna , Condicionamento Físico Animal/métodos , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio , Treinamento de Força , Aumento de Peso
12.
Sci Rep ; 12(1): 2434, 2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35165331

RESUMO

Emerging evidence suggests that disruption of circadian rhythmicity contributes to development of comorbid depression, cardiovascular diseases (CVD), and type 2 diabetes mellitus (T2DM). Physical exercise synchronizes the circadian system and has ameliorating effects on the depression- and anxiety-like phenotype induced by circadian disruption in mice and sand rats. We explored the beneficial effects of voluntary wheel running on daily rhythms, and the development of depression, T2DM, and CVD in a diurnal animal model, the fat sand rat (Psammomys obesus). Voluntary exercise strengthened general activity rhythms, improved memory and lowered anxiety- and depressive-like behaviors, enhanced oral glucose tolerance, and decreased plasma insulin levels and liver weight. Animals with access to a running wheel had larger heart weight and heart/body weight ratio, and thicker left ventricular wall. Our results demonstrate that exercising ameliorates pathological-like daily rhythms in activity and blood glucose levels, glucose tolerance and depressive- and anxiety-like behaviors in the sand rat model, supporting the important role of physical activity in modulating the "circadian syndrome" and circadian rhythm-related diseases. We suggest that the utilization of a diurnal rodent animal model may offer an effective way to further explore metabolic, cardiovascular, and affective-like behavioral changes related to chronodisruption and their underlying mechanisms.


Assuntos
Doenças Cardiovasculares/complicações , Doenças Cardiovasculares/terapia , Transtornos Cronobiológicos/complicações , Transtornos Cronobiológicos/terapia , Ritmo Circadiano , Depressão/complicações , Depressão/terapia , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/terapia , Terapia por Exercício/métodos , Condicionamento Físico Animal/métodos , Animais , Ansiedade/complicações , Ansiedade/fisiopatologia , Ansiedade/terapia , Glicemia/análise , Doenças Cardiovasculares/fisiopatologia , Transtornos Cronobiológicos/fisiopatologia , Depressão/fisiopatologia , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/fisiopatologia , Modelos Animais de Doenças , Gerbillinae , Teste de Tolerância a Glucose , Insulina/sangue , Locomoção , Masculino , Ratos , Núcleo Supraquiasmático/fisiopatologia , Resultado do Tratamento
13.
FASEB J ; 36(3): e22177, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35142393

RESUMO

Exosomes, key mediators of cell-cell communication, derived from type 2 diabetes mellitus (T2DM) exhibit detrimental effects. Exercise improves endothelial function in part via the secretion of exosomes into circulation. Extracellular superoxide dismutase (SOD3) is a major secretory copper (Cu) antioxidant enzyme that catalyzes the dismutation of O2•- to H2 O2 whose activity requires the Cu transporter ATP7A. However, the role of SOD3 in exercise-induced angiogenic effects of circulating plasma exosomes on endothelial cells (ECs) in T2DM remains unknown. Here, we show that both SOD3 and ATP7A proteins were present in plasma exosomes in mice, which was significantly increased after two weeks of volunteer wheel exercise. A single bout of exercise in humans also showed a significant increase in SOD3 and ATP7A protein expression in plasma exosomes. Plasma exosomes from T2DM mice significantly reduced angiogenic responses in human ECs or mouse skin wound healing models, which was associated with a decrease in ATP7A, but not SOD3 expression in exosomes. Exercise training in T2DM mice restored the angiogenic effects of T2DM exosomes in ECs by increasing ATP7A in exosomes, which was not observed in exercised T2DM/SOD3-/- mice. Furthermore, exosomes overexpressing SOD3 significantly enhanced angiogenesis in ECs by increasing local H2 O2  levels in a heparin-binding domain-dependent manner as well as restored defective wound healing and angiogenesis in T2DM or SOD3-/- mice. In conclusion, exercise improves the angiogenic potential of circulating exosomes in T2DM in a SOD3-dependent manner. Exosomal SOD3 may provide an exercise mimetic therapy that supports neovascularization and wound repair in cardiometabolic disease.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Exossomos/metabolismo , Neovascularização Fisiológica , Corrida , Superóxido Dismutase/metabolismo , Animais , Células Cultivadas , ATPases Transportadoras de Cobre/sangue , ATPases Transportadoras de Cobre/metabolismo , Diabetes Mellitus Tipo 2/fisiopatologia , Endotélio Vascular/metabolismo , Endotélio Vascular/fisiologia , Exercício Físico , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Condicionamento Físico Animal/métodos , Ratos , Superóxido Dismutase/sangue
14.
Oxid Med Cell Longev ; 2022: 1764589, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35154563

RESUMO

Alzheimer's disease (AD) is characterized by the accumulation of ß-amyloid (Aß) plaques and tau neurofibrillary tangles in the brain. Although the exact details of the neuronal protective effect of high-intensity interval training (HIIT) on AD remain unclear, the preclinical phase of AD appears to be the important time point for such intervention. The described experiment investigates the neuroprotective effect of HIIT on AD in APP/PS1 mice. In total, 14 C57BL6 healthy control (C) mice and 14 APP/PS1 AD mice were each randomly assigned into two groups, one that did not participate in HIIT (C and AD groups, respectively) and the other subject to HIIT intervention (control HIIT (CE) and AD HIIT (ADE) groups, respectively). Visualization of hippocampal neuronal cells via HE and Congo red staining showed significant improvement in cell status and a significant reduction in amyloidosis in ADE compared with AD. The results of behavioral analysis show that the HIIT intervention significantly improved cognitive decline and reduced spatial exploration in both the C and AD groups. Immunofluorescence showed that the overall brain and the hippocampus of aged rats in the C and AD groups had different degrees of neuroglial responses and astrocyte GFAP proliferation and hypertrophy, with obvious improvement in the CE and ADE groups after 10 weeks of HIIT intervention. These results show that HIIT significantly improves the status of mitochondrial kinetic proteins and related proteins, with the mechanism differing between the normal aging C and the AD groups. 10 weeks of HIIT improved the imbalance in mitochondrial dynamics present in normal control mice and in AD mice. We conclude that preclinical training intervention has a significant positive effect on the exploratory behavior and cognitive functioning of mice.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/terapia , Astrócitos/metabolismo , Astrócitos/patologia , Terapia por Exercício/métodos , Proteína Glial Fibrilar Ácida/metabolismo , Treinamento Intervalado de Alta Intensidade/métodos , Dinâmica Mitocondrial , Neuroproteção , Condicionamento Físico Animal/métodos , Doença de Alzheimer/psicologia , Animais , Estudos de Casos e Controles , Cognição , Disfunção Cognitiva/terapia , Modelos Animais de Doenças , Comportamento Exploratório , Hipocampo/metabolismo , Hipertrofia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Transdução de Sinais , Resultado do Tratamento
15.
Life Sci ; 293: 120306, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35016883

RESUMO

Recent studies have shown that proper exercise significantly restricts inflammatory responses through regulation of the immune system. This review discusses mechanisms of protective effects of exercise in lipopolysaccharide (LPS)-induced lung injury. We performed a systematic search in PubMed, Scopus, and Web of Sciences using the search components "physical exercise", "lung" and "LPS" to identify preclinical studies, which assessed physical activity effects on LPS-induced pulmonary injury. Articles (n = 1240) were screened and those that had the eligibility criteria were selected for data extraction and critical appraisal. In all of the 21 rodent-model studies included, pulmonary inflammation was induced by LPS. Exercise protocols included low and moderate intensity treadmill training and swimming. The results showed that aerobic exercise would prevent LPS-induced oxidative stress and inflammation as well as airways resistance, exhaled nitric oxide, protein leakage, increase in total WBC, macrophage and neutrophil population, levels of interleukin (IL)-6, IL-1ß, IL-17, tumor necrosis factor-α, granulocyte-macrophage colony-stimulating factor and CXCL1/KC, and improved IL-10 and IL-ra in lung tissue, bronchoalveolar lavage fluid (BALF) and serum. In addition, in trained animals, the expression of some anti-inflammatory factors such as heat shock protein72, IL-10, triggering receptor expressed on myeloid cells-2 and irisin was increased, thus ameliorating lung injury complications. Aerobic exercise was shown to alleviate the LPS-induced lung injury in rodent models by suppressing oxidative stress and lowering the ratio of pro-inflammatory to anti-inflammatory cytokines.


Assuntos
Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/terapia , Lipopolissacarídeos/toxicidade , Condicionamento Físico Animal/fisiologia , Pneumonia/induzido quimicamente , Pneumonia/terapia , Lesão Pulmonar Aguda/imunologia , Animais , Líquido da Lavagem Broncoalveolar/imunologia , Mediadores da Inflamação/imunologia , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Condicionamento Físico Animal/métodos , Pneumonia/imunologia
16.
Am J Physiol Heart Circ Physiol ; 322(2): H310-H318, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34995166

RESUMO

During aerobic exercise, hemodynamic alterations occur. Although blood flow in skeletal muscle arteries increases, it decreases in visceral vessels because of mesenterial vasoconstriction. However, maintaining renal blood flow during intensive sport is also a priority. Our aim was to investigate the changes of vascular reactivity and histology of isolated renal artery of male and female rats in response to swim training. Wistar rats were distributed into four groups: male sedentary (MSed), male trained (MTr), female sedentary (FSed), and female trained (FTr). Trained animals underwent a 12-wk-long intensive swimming program. Vascular function of isolated renal artery segments was examined by wire myography. Phenylephrine-induced contraction was lower in FSed than in MSed animals, and it was decreased by training in male but not in female animals. Inhibition of cyclooxygenases by indomethacin reduced contraction in both sedentary groups, and in MTr but not in FTr animals. Inhibition of nitric oxide production increased contraction in both trained groups. Acetylcholine induced relaxation was similar in all experimental groups showing predominant NO-dependency. Elastin and smooth muscle cell actin density was reduced in female rats after aerobic training. This study shows that, as a result of a 12-wk-long training, there are sex differences in renal arterial responses following exercise training. Swimming moderates renal artery vasoconstriction in male animals, whereas it depresses elastic fiber and smooth muscle actin density in females.NEW & NOTEWORTHY We provided the first detailed analysis of the adaptation of the renal artery after aerobic training in male and female rats. As a result of a 12-wk-long training program, the pharmacological responses of renal arteries changed only in male animals. In phenylephrine-induced contraction, cyclooxygenase-mediated vasoconstriction mechanisms lost their significance in female rats, whereas NO-dependent relaxation became a significant contraction reducing factor in both sexes. Early structural changes, such as reduced elastin and smooth muscle cell actin evolves in females.


Assuntos
Artéria Renal/fisiologia , Caracteres Sexuais , Natação , Vasoconstrição , Acetilcolina/farmacologia , Actinas/metabolismo , Animais , Agonistas Colinérgicos/farmacologia , Inibidores de Ciclo-Oxigenase/farmacologia , Elastina/metabolismo , Feminino , Indometacina/farmacologia , Masculino , Fenilefrina/farmacologia , Condicionamento Físico Animal/métodos , Ratos , Ratos Wistar , Artéria Renal/efeitos dos fármacos , Artéria Renal/metabolismo , Vasoconstritores/farmacologia
17.
Neurosci Lett ; 771: 136466, 2022 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-35051434

RESUMO

Physical exercise is considered an adjuvant treatment to Parkinson's disease (PD) patients, possibly reducing inflammatory responses in the brain. Studies have stated that physical exercise protects dopaminergic neurons in PD models produced by neurotoxins. However, few studies focused on immunohistochemically reacted astrocytes and morphometric analyses of these cells in a PD mouse model submitted to physical exercise. We investigated the effects of treadmill training on striatal astrocytes of a PD mouse model combining immunohistochemistry and western-blotting for glial fibrillary acidic protein (GFAP) with morphometric analyses. Male Swiss mice were divided into 4 groups: sedentary control (SEDCONT), exercise control (EXERCONT), sedentary Parkinson (SEDPD), and exercise Parkinson (EXERPD). Stereotaxic bilateral injections of 6-hydroxydopamine into the striatum were adopted for PD groups. Striatal astrocytes showed increased GFAP in EXERPD, and we observed a higher level of GFAP in EXERPD than SEDPD. The number of primary and secondary processes was similar in striatal astrocytes of control groups and EXERPD. The astrocyte primary processes of SEDPD were larger than those of EXERPD, EXERCONT and SEDCONT. Cell body diameters and areas showed no difference between groups. We concluded that physical exercise influences striatal astrocytes in exercised parkinsonian mice.


Assuntos
Astrócitos/metabolismo , Corpo Estriado/fisiopatologia , Doença de Parkinson/terapia , Condicionamento Físico Animal/métodos , Animais , Corpo Estriado/citologia , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Masculino , Camundongos , Corrida
18.
Neurosci Lett ; 770: 136443, 2022 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-34990761

RESUMO

The positive effects of both ketogenic diet (KD) and regular voluntary exercise on anxiety and depression behavior have been recently reported in rodent animals, but the effects of pairing a KD with exercise on depression and anxiety are unknown. In this study, we aimed to investigate the effects of combination of KD and regular voluntary exercise on anxiety and depression-like behavior in Balb/c mice. We've demostrated that anxiety and depression levels decreased in KD-exercised (KD-Ex) mice. ß-hydroxybutyrate (BHB) levels increased while glucose, insulin levels and LDL/HDL ratio decreased in KD-Ex mice. There was a negative correlation between BHB and the time spent in the closed arms of elevated plus maze (EPM) or the time spent in periphery walls of open field test (OFT) and the immobility time in forced swim test (FST) which all of them are indicators of low depression and anxiety levels. There was a positive correlation between LDL/HDL ratio and the time spent in the closed arms of EPM or the immobility time in FST. The immobility time in FST was positively correlated with insulin while the mobility time in FST was negatively correlated with glucose. In conclusion, these results suggest that decline in anxiety and depression-like behaviors resulted from KD with regular voluntary exercise may be associated with increased BHB levels and decreased LDL/HDL ratio and insulin or glucose levels. Further research is necessary for our understanding of the mechanisms by which pairing a KD with voluntary exercise influences brain and behavior.


Assuntos
Ansiedade/terapia , Depressão/terapia , Dieta Cetogênica/métodos , Condicionamento Físico Animal/métodos , Animais , Ansiedade/dietoterapia , Glicemia/metabolismo , Depressão/dietoterapia , Insulina/sangue , Lipoproteínas HDL/sangue , Lipoproteínas LDL/sangue , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Corrida
19.
Cereb Cortex ; 32(17): 3829-3847, 2022 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-35029628

RESUMO

The temporal pattern of cortical plasticity induced by high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) is required to clarify their relative benefits to prevent neurological disorders. The purpose of this study is to define the time-dependent effects of work-matched HIIT and MICT on cortical plasticity, endurance, and sensorimotor performances over an 8-week training period in healthy rats. Adult healthy rats performed incremental exercise tests and sensorimotor tests before and at 2, 4, and 8 weeks of training. In parallel, cortical markers related to neurotrophic, angiogenic, and metabolic activities were assessed. Results indicate that HIIT induced an early and superior endurance improvement compared to MICT. We found significant enhancement of speed associated with lactate threshold (SLT) and maximal speed (Smax) in HIIT animals. MICT promoted an early increase in brain-derived neurotrophic factor and angiogenic/metabolic markers but showed less influence at 8 weeks. HIIT upregulated the insulin-like growth factor-1 (IGF-1) as well as neurotrophic, metabolic/angiogenic markers at 2 and 8 weeks and downregulated the neuronal K-Cl cotransporter KCC2 that regulates GABAA-mediated transmission. HIIT and MICT are effective in a time-dependent manner suggesting a complementary effect that might be useful in physical exercise guidelines for maintaining brain health.


Assuntos
Treinamento Intervalado de Alta Intensidade , Condicionamento Físico Animal , Animais , Treinamento Intervalado de Alta Intensidade/métodos , Condicionamento Físico Animal/métodos , Ratos
20.
Neurosci Lett ; 766: 136344, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34785309

RESUMO

The present study aimed to examine the synergistic effects of exercise and pharmacological inhibition of the α5 subunit-containing gamma-aminobutyric acid (GABA)A receptors (α5GABAAR) on motor function recovery after intracerebral hemorrhage (ICH). Wistar rats were divided into five groups (n = 8 per group): SHAM, ICH, ICH + exercise (ICH + EX), ICH + L-655,708 (ICH + L6), and ICH + L-655,708 and exercise (ICH + L6EX) groups. ICH was induced by microinjection of a collagenase solution. The ICH + EX and ICH + L6EX groups exercised on a treadmill (12 m/min for 30 min/day). L-655,708 (0.5 mg/kg), a negative allosteric modulator of α5GABAAR, was administered intraperitoneally to the ICH + L6 and ICH + L6EX groups. Each intervention was initiated 1 week after the ICH surgery and was performed for 3 weeks, followed by tissue collection, including the motor cortex and spinal cord. At 4 weeks after ICH, significant motor recovery was found in the ICH + L6EX group compared to the ICH group. L-655,708 administration increased brain-derived neurotrophic factor (BDNF) expression in the cortex. Regarding neuroplastic changes in the spinal cord, rats in the ICH + L6EX group showed a significant increase in several neuroplastic markers: 1) BDNF, 2) growth-associated protein 43 as an axonal sprouting marker, 3) synaptophysin as a synaptic marker, and 4) Nogo-A as an axonal growth inhibitor. This study is the first to demonstrate that combined treatment with exercise and α5GABAAR inhibitor effectively promoted motor function recovery after ICH. Regarding the underlying mechanism of post-ICH recovery with the combined treatment, the present study highlights the importance of both growth and inhibitory modification of axonal sprouting in the spinal cord.


Assuntos
Hemorragia Cerebral , Antagonistas de Receptores de GABA-A/farmacologia , Imidazóis/farmacologia , Condicionamento Físico Animal/métodos , Recuperação de Função Fisiológica/fisiologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Masculino , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Plasticidade Neuronal/efeitos dos fármacos , Plasticidade Neuronal/fisiologia , Ratos , Ratos Wistar , Receptores de GABA-A , Recuperação de Função Fisiológica/efeitos dos fármacos , Medula Espinal/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...